
Investigation of the portability of the GNU

HURD

Matthew Wilcox

March 11, 1998

Abstract

The GNU HURD is currently only available for the Intel i386 and com-

patible processors. It was always intended to run on as many architectures

as possible. This report examines the portability of the GNU HURD. It ini-

tially describes the approach of attempting to port the Mach microkernel, on

which HURD is based, to the ARM processor. It then addresses the question

of attempting to port HURD to the L4 microkernel.

Contents

1 Introduction 3

1.1 What is portability? . 3

1.2 The history of HURD . 3

1.3 Features of HURD . 4

1.4 The goal of this project . 5

1.5 Report layout . 5

2 Review of Microkernels 6

2.1 What is a Microkernel? . 6

2.2 Classi�cation of Kernels . 7

2.3 Examples of Kernel design . 8

2.4 Why build multiservers? . 9

3 The ARM processor 11

3.1 Overview of the ARM . 11

3.2 Software Interrupts . 12

3.3 Hardware Interrupts . 13

3.4 Aborts . 13

3.5 Memory Management . 15

4 Porting Mach to the ARM 17

4.1 Goal . 17

4.2 History of Mach . 17

4.3 Support for the ARM . 20

4.4 ARM support for Mach features 20

4.4.1 Tasks and Threads . 20

4.4.2 Device drivers . 20

4.4.3 Clocks . 21

1

4.5 Structure of Mach . 22

4.6 Summary of Evaluation . 23

5 Porting HURD 24

5.1 The Architecture of HURD 24

5.2 The HURD �lesystem . 24

5.3 HURD Processes . 25

5.4 Other servers . 26

5.5 Libraries . 26

5.6 Other components . 27

6 The L4 Microkernel 28

6.1 Why L4? . 28

6.2 Features of L4 . 29

6.3 Memory management in L4 31

6.4 Device drivers in L4/ARM . 31

6.5 HURD on L4 . 33

6.5.1 Memory Management 33

6.5.2 Interprocess Communication 34

6.5.3 Emulating Mach . 35

6.6 Experimental Evaluation . 35

7 Project Evaluation 37

7.1 Conclusions . 37

7.2 Further Work . 37

2

Chapter 1

Introduction

1.1 What is portability?

The word portability has manymeanings when used with respect to computer

programs. Here, I interpret it to be the amount of modi�cation which must

be made to a program before it will run natively on a system other than

that on which is was written. The original aim of the GNU system was to

have a system which would be source-code compatible between many varying

machines. Sun's Java system aims to be binary-compatible between systems,

but the Free Software Foundation do not have this aim since they believe that

source code should be available for all programs.

1.2 The history of HURD

The Free Software Foundation have been working on their GNU

1

operating

system since 1985. It was designed to be a replacement for Unix. This had the

advantage that when it was released, there would already be a large number

1

GNU stands for GNU's Not Unix

3

…

Mach

Hardware

auth storeio ext2fsproc

Figure 1.1: Block diagram of HURD.

of people who were able to use the system, and it meant that programmers

could work on implementing small pieces of the system independently of each

other. Many hundreds of utilities have been released by GNU and they run

on a wide variety of Unix and Unix-like platforms, and even some totally

unrelated platforms. Because they are so widely available and used, they

have received a great deal of testing.

The HURD

2

is the GNU replacement for the Unix kernel. It was �rst released

on the 6th August 1996.

1.3 Features of HURD

HURD provides a Unix-like interface to applications that run under it. HURD

is structured as a number of communicating user-level processes that run on

top of the Mach microkernel. There is almost no machine dependent code

in HURD, so all that is necessary is to port the microkernel that supports it

to new hardware. In order to do this, it is �rst necessary to port the GNU

C compiler and the binutils | the assembler, the linker and various related

utilities. The structure of the HURD is illustrated in �gure 1.1 and discussed

further in Section 5.1

2

HURD stands for HIRD of Unix Replacing Daemons. HIRD stands for HURD of

Interfaces Representing Depth

4

1.4 The goal of this project

The goal of this project is to determine how easy it is to make HURD run

on di�ering architectures. In order to achieve this, I shall attempt to make

it work on an architecture that it has never previously run on and one that

I am familiar with | the ARM processor. Since HURD is based on Mach,

porting the Mach microkernel to the ARM processor would be su�cient to

run HURD, but Mach is not currently available for the ARM.

1.5 Report layout

This report starts by discussing microkernel based architectures. I then dis-

cuss my attempt to port the Mach microkernel to run on the ARM. Subse-

quently I examine the possibility of making HURD run on the L4 microkernel.

5

Chapter 2

Review of Microkernels

2.1 What is a Microkernel?

An Operating System is generally considered to be a set of standard utility

programs, plus a kernel which provides services to allow programs to run.

The kernel provides abstraction from the hardware and presents a higher

level interface to user programs. It also normally provides protection from

other tasks and controls communication between tasks.

The fundamental goal of a microkernel-based system is to remove as much

functionality as possible from the kernel. As many services as possible should

be provided by tasks external to the microkernel.

This has two main advantages, �rstly it allows testing and debugging of the

kernel to occur in an environment which provides greater functionality.

Secondly, it can allow for multiple operating system `personalities' to be run

concurrently on the same machine. This bene�ts users by allowing scarce or

expensive physical resources to be shared. If this is allowed by the speci�c

microkernel, it can also permit new versions to be tested without disruption

to other users of the machine.

6

The principle disadvantage of the microkernel approach is that it will be

slower than a monolithic kernel. This can be minimised by suitable design

decisions, and we shall see later how great an e�ect this has.

2.2 Classi�cation of Kernels

It seems to be possible to classify kernels into three di�erent types. Firstly,

there are the monolithic microkernels where all services are provided by the

kernel and there is a big distinction between kernel and non-kernel systems.

Kernels are traditionally non-pageable for engineering reasons and thus de-

sirable additional features, such as a �ling system based on the ftp protocol

do not get added as this would lead to unacceptable memory usage by the

kernel.

Once we have the concept of a microkernel, the obvious approach is to run an

operating system emulator on top of it. E�ectively, the microkernel provides

a virtual processor which the emulator runs on. This design is called a single-

server and these systems form the second category. The microkernel will not

be pageable and the single-server may or may not be. It is still monolithic to

a great degree however and it will still be very di�cult to add functionality

to it. Given this base, it is now feasible to run and debug alternative versions

of the single-server concurrently with the base one, allowing for faster, more

convenient prototyping.

Thirdly, we can take the multiserver approach and split the single-server into

a collection of servers. This allows for some servers to be paged out if they are

not currently being used while others remain paged in. If one server contains

bugs, its ability to a�ect other tasks is greatly diminished and the problem

can be isolated and dealt with much more e�ciently. Again, replacement

servers can be developed concurrently with a `production' collection of servers

handling everyday usage.

7

2.3 Examples of Kernel design

There are many examples of the �rst class of kernel available for study, such as

Linux, NetBSD, FreeBSD and OpenBSD. We are not particularly concerned

with these in this project.

There are several microkernel designs which lend themselves well to the sec-

ond category (single-server) approach. Mach with the Lites single-server is

probably the most popular example of this type. There is also an ongoing

project at GMD

1

to port Linux to the L4 microkernel.

The Chorus [CDK94] operating system was designed for a multi-server ap-

proach. In Chorus terminology, the tasks are called actors. In an attempt

to improve performance, actors may be co-located with the microkernel and

run with kernel privilege. This is because switching from kernel mode to

user mode is extremely expensive with some processors, notably the Intel

x86 family. One study [Lie95] claims that switching to kernel mode and back

to user mode takes 107 cycles with the Intel 486.

Nevertheless, the Chorus microkernel and the Mach microkernel share many

similar concepts. Both use the concept of ports to implement interprocess

communication (IPC), but they implement protection in a di�erent manner.

In Chorus, a 64 bit key is used in addition to a port ID to make it di�cult for

a malicious actor to send a message to an unsuspecting actor. In Mach, port

send rights are administered by the microkernel which allows tasks to revoke

send rights from tasks they no longer trust, and additionally to implement

send-once rights, where a client may allow a task to send it a reply, but send

no more messages. L4 takes a radically di�erent approach by not attempting

to implement protection within the microkernel, but to adopt a distributed

protection scheme.

All three microkernels have very di�erent ideas about implementing device

drivers. Mach retains the device drivers within the microkernel. Chorus

removes them into actors, which are co-located with the microkernel, but

they can still be developed externally to the microkernel since it presents the

1

The German National Research Center for Information Technology

8

same API to the actor. In L4, device drivers are not part of the microkernel

at all. They are implemented as processes which claim any interrupts they

require and request portions of the memorymap which correspond to memory

mapped I/O regions. Interrupts are implemented by the microkernel sending

a message to the driver which has claimed that interrupt. This is similar to

Chorus, but L4 does not require colocation in order to achieve acceptable

performance. This is probably due to the extremely e�cient IPC in L4.

Writing new device drivers is one of the most common requirements when de-

veloping, maintaining and porting kernels, so a system which permits drivers

to be developed, tested and debugged more e�ciently and safely is extremely

useful.

Mach and Chorus were developed in a very di�erent way to L4. Their de-

signers implemented features that they thought would enable people to im-

plement other operating systems on top of the microkernel in an e�ective

manner. Instead, L4 implements what its designers consider to be a minimal

set of features that are su�cient to implement an operating system. The

designers are then able to expend much more e�ort on optimising the few

remaining operations which are used frequently.

For example, when IPC was designed in L4, the designers calculated the

minimum time possible for a message to be delivered, assuming an optimum

scenario. They then set themselves a target of double this. A full description

of this method can be found in [Lie93].

2.4 Why build multiservers?

Once the decision has been taken to remove functionality from the kernel and

place the functionality of the operating system into a user-level task, the next

natural inclination is to split the kernel up into separate bits. This has the

advantage of shielding one portion of the kernel from another and allows for

replacement of part of the kernel while leaving other portions undisturbed.

It can also allow for operating systems with vastly di�erent requirements to

run on the same machine. For example, a real-time scheduler can coexist

9

with a typical Unix scheduler, allowing non-critical tasks to run when the

real-time systems are idle.

There may be additional overheads involved with this approach. In partic-

ular if task switching is slow, communication between the di�erent servers

involved will be slow.

10

Chapter 3

The ARM processor

3.1 Overview of the ARM

The ARM CPU is a 32 bit RISC processor originally designed by Acorn

Computers Limited. Acorn formed Advanced RISC Machines Ltd to design-

ing future versions of the processor. ARM Ltd now licence the designs to a

large number of semiconductor, consumer electronics and other companies

worldwide. Details about the ARM710a processor which is typical of the

processors currently available may be found in [Adv95].

It has a largely orthogonal instruction set with a load/store architecture. The

ARM has 16 general purpose 32-bit registers and a Program Status Register

(which contains arithmetic result
ags, processor mode and interrupt status)

accessible at any time. Some of these registers are shadowed in other proces-

sor modes. The processor has an unprivileged user mode (usr) and several

privileged modes (svc, irq, fiq, abt, und), the last two of which are not

available on ARM CPUs before the ARM6. This presents some problems for

virtual memory systems, as we shall see later.

All instructions are conditionally executed, not just branch instructions. This

allows for a large reduction in the number of branch instructions required

11

Number APCS Description

r15 pc program counter

r14 lr link register

r13 sp stack pointer

r12 ip scratch register

r11 fp frame pointer

r4-r10 v1-v7 variable registers

r0-r3 a1-a4 argument registers

Figure 3.1: The APCS register bindings

which makes pipeline re�lls much less common.

Although 15 of the 16 registers are general purpose, in order to ease the job

of the compiler, an ARM Procedure Call Standard is de�ned which assigns

additional meaning to speci�c registers. This is shown in Figure 3.1

The program counter is automatically copied to the link register by the ARM

when it performs a function call (Branch with Link). The caller of the func-

tion places the �rst 4 arguments into a1-a4 and any further arguments go on

the stack. The called function may corrupt all of a1-a4, but must preserve

v1-v7, fp and sp. ip may be corrupted by the procedure call before entry

to the procedure proper and may not be used as an argument register or to

save data over the call.

3.2 Software Interrupts

The ARM has a number of ways to enter privileged modes in order to perform

operations which are not permitted to tasks running in usr mode. One of

these ways is via a Software Interrupt instruction, or swi for short which

causes the processor to enter svcmode and jump to address 0x08. This would

normally be a branch into the part of the kernel that will take appropriate

action. 8 bits of the 32-bit instruction are used for the condition code and

to indicate that this is a SWI. This leaves a 24-bit �eld in this instruction

which is not interpreted by the processor, and this can be used to decide what

12

action to take. svc mode has its own private R13 svc and R14 svc. The

address of the instruction following the swi instruction is placed in R14 svc

by the processor. R13 svc should have been previously set up to point to

the kernel stack; this is generally part of the bootstrap code.

3.3 Hardware Interrupts

There are two types of hardware interrupt on the ARM, irq and fiq. fiq is

an abbreviation of Fast Interrupt. The ARM has 2 interrupt lines entering

it, one for each interrupt. An irq cannot interrupt a fiq. When an interrupt

is signalled on one of these lines, the ARM switches into the corresponding

privileged mode and will typically enter the kernel, indirected via 0x18 for

irq and 0x1C for fiq. These modes also have their own private registers,

R13 irq and R14 irq; and R8 fiq to R14 fiq. Again, R14 is set up by

the processor to point to the appropriate return address once the interrupt

has been handled.

Devices are multiplexed onto these two lines by the IO controller (IOC in old

machines and IOMD in newer machines). In order to �nd out which device

triggered the interrupt, it is necessary to read the status registers from IOC

(which is memory mapped). The I/O map is illustrated in Figure 3.2

3.4 Aborts

There is an abort line entering the ARM processor which can be pulled

high by an external memory manager when the ARM attempts an illegal

access to memory. The ARM has two abort traps, depending on what it was

attempting to do when it received the abort. If it was attempting to fetch

data from an illegal address, it enters abt mode and jumps to 0x10, and if it

attempts to execute an instruction which is marked as having been from an

13

Address Read Write

0x00 Control Control

0x04 Keyboard Keyboard

0x08

0x0C

0x10 IRQ A status

0x14 IRQ A request Clear IRQ

0x18 IRQ A mask IRQ A mask

0x1C

0x20 IRQ B status

0x24 IRQ B request

0x28 IRQ B mask IRQ B mask

0x2C

0x30 FIQ status

0x34 FIQ request

0x38 FIQ mask FIQ mask

0x3C

Figure 3.2: Memory map of interrupt sources

illegal address

1

then it enters abt mode and jumps to 0x0C. In either case,

it preserves the return address in R14 abt.

When the ARM attempts to execute an instruction which it does not un-

derstand it enters und mode, stores the address of the instruction following

the unde�ned one in R14 und and jumps to address 0x04. This is normally

used to implement a software
oating point emulator in machines with no

oating point hardware. Unfortunately, there is no freely available
oating

point emulator for the ARM, and this is someting that would need to be

implemented.

Versions of the ARM before the ARM6 did not have abt or und modes.

In the ARM2 and ARM3, when illegal memory accesses or unde�ned in-

structions occur, the ARM switches into svc mode instead. This makes it

very di�cult to implement a virtual memory system since if the processor is

1

The abort will not be taken immediately since the abort should not be occur if the

aborting instruction enters the pipeline but is not subsequently taken

14

in svc mode and it accesses memory which is not currently paged in then

R14 svc, which would normally contain the return address from the system

call, will be overwritten with the address of the aborting instruction. To get

around this, it is necessary to preserve the return address into a di�erent

register before attempting to access any memory, possibly including the svc

stack. Acorn's RISCiX (a derivative of 4.3BSD Unix) works in this manner.

Acorn's RISC OS does not bother, and simply does not implement virtual

memory. Under RISC OS, it is also not normally permitted to issue
oating

point instructions while in svc mode since this will also overwrite R14 svc.

3.5 Memory Management

The family of ARM processors have been attached to several di�erent mem-

ory management systems. Acorn originally designed the MEMC to go with

the ARM2, and this was retained for the ARM3. The ARM6 core is available

with an MMU in the ARM610 chip, and without an MMU in the ARM60

chip. The MMU in the ARM610, ARM710 and StrongARM can be con-

sidered to be roughly equivalent. The MEMC chip is primitive by today's

standards and it would be extremely di�cult to implement a sophisticated

memory management system with the MEMC. I will consider only the inter-

section of the feature sets of the MMUs contained in the ARM610, ARM710

and StrongARM since this produces a design which is compatible with all

current production processors.

The MMU contains a Translation Look-aside Bu�er (TLB), access control

logic and translation table walking logic. The MMU translates virtual ad-

dresses generated by the ARM into physical addresses which are output onto

the address lines. Before the MMU is activated, it is necessary to prepare a

Translation Table which is 16k of Descriptors. Descriptors allow for either

single-indirection (Sections) or double-indirection (Pages). Sections contain

a pointer to 1MB of memory, and Page Descriptors contains a pointer to 4k of

memory. The advantage of using Sections is that they are quicker to translate

and only take 1 entry in the processor's TLB for an entire Megabyte.

When translating an address, the MMU uses the top 12 bits to index the

15

Translation table. If it �nds a Section descriptor, it replaces the top 12 bits

with the reference that it �nds in the table. If it �nds a Page Descriptor, it

uses the next 8 bits of the virtual address to index the Page Table that the

Page Descriptor points to, which contains the top 20 bits of the new physical

address.

16

Chapter 4

Porting Mach to the ARM

4.1 Goal

The three critical components to getting the GNU system running on new

types of machine are GCC (the GNU C Compiler), binutils (the GNU binary

utilities) and Mach. GCC and binutils are already widely ported, so the

obvious next step is to assess the portability of Mach. Mach as distributed by

GNU supports only the i386 (and similar) processors. In order to determine

how easy it is to port Mach, I decided to attempt to port it to run on the

ARM architecture which I am reasonably familiar with programming.

4.2 History of Mach

Mach was �rst described in a paper [ABB

+

86] to Usenix in 1985. It was

developed at Carnegie Mellon University to form the base for their operating

system research. It was initially based within 4.2BSD, replacing its compo-

nents with Mach components as they were completed. When 4.3BSD was

released, the remaining BSD components were updated. The �rst release

of Mach, Release 0 took place in 1987. Several more releases followed until

17

Release 3 in 1990, by which stage the BSD components had all been removed

from the server to run as a single-server on top of the `bare' Mach microker-

nel. The University of Utah took over development of Mach in 1995 to form

the basis of their research into operating systems and added new features.

� Additional device drivers (ported from Linux)

� Migrating Threads

� Kernel Activations

� Presentation/Interface RPC

They released Mach 4 in 1996. They have since continued in their research

with a project called Fluke. GNU now distribute a version of Mach that is

based upon the Mach4 release from Utah.

Mach has been used as the basis for commercial operating systems; Version

2.5 was used as the basis of the NeXTStep operating system and also the

basis of OSF/1 Unix. The OSF still maintain a separate copy of Mach, now

based on Mach Version 3. Recently, the OSF have ported Linux to run on

top of their version of Mach.

18

4.2BSD

4.3BSD Mach 2.5

Mach 3

MachTen

GNUmach
1997

1996

1995

1994

1993

1992

1991

1990

1989

1988

1987

1986

1985

1984

1983

1982

Mach 4

4.4BSD

Linux

OSF/Mach
NeXTStep

19

4.3 Support for the ARM

Most GNU tools support the ARM, including GCC (The GNU C Compiler),

binutils and glibc

1

.

4.4 ARM support for Mach features

Mach can be thought of as providing a virtual machine to tasks which run

on top of it. This section shows how some of the concepts which are part of

the virtual machine can be implemented on the ARM architecture.

4.4.1 Tasks and Threads

In Mach, the notion of a process is split into a task which is a container for

all the resources that are allocated to the process and threads which act as

points of control for the process. A thread is a very lightweight entity then,

consisting only of its register state, some thread-speci�c communication port

rights, scheduling state and any statistics which the kernel is collecting. Tasks

contain much more state; they contain threads, have an associated address

space, hold a set of port rights and can intercept and system calls made by

threads.

4.4.2 Device drivers

There are several possible approaches to the design of the irq handler. The

one used in Acorn's RISC OS [Aco92] is to simply call the device driver

directly, with the processor remaining in irq mode and further interrupts

disabled. If the device driver thinks it will take an unacceptably long time

to execute, it may reenable interrupts, but must then be able to cope with

1

Currently only in developmental versions

20

being called reentrantly. A better solution is to use a queue of pending

interrupts. In this system, interrupts are left disabled for only very short

periods of time during the kernel interrupt handler, the device drivers are

called with interrupts enabled and are called in svc mode instead of irq

mode. The kernel irq handler can then protect the device drivers against

being reentered by allowing the existing instance to complete and then calling

it when it �nishes dealing with the old irq.

A consequence of the device driver being called with irqs enabled means

that a priority system is needed to ensure that time critical interrupts are

not missed. In order to not lose the bene�ts of fiq mode (ie having a lot

of registers which do not need saving; plus devices that are connected to the

fiq lines often require very fast interrupt handling, I think a hybrid system

is required which allows fiq routines to execute as in the RISC OS style

system, but irqs to be done in this new fashion.

When an interrupt occurs, it's evidently necessary to save the state of the

thread that was interrupted. It is probably sensible to stop the currently

running thread and put it back in the pool of runnable threads rather than

returning directly to it as a higher priority thread that has been blocking for

I/O may now be able to continue.

For an Unix-like OS such as Mach, the sensible solution seems to be to

have two halves to device drivers: one half which is called directly when an

interrupt is triggered, which performs the time-critical work, such as copying

data from a register on the device into a bu�er in ordinary RAM.

4.4.3 Clocks

Two of the irq sources are timers. These are loaded with an initial value and

then count down to zero at a rate of 500ns per tick. When it reaches zero, an

interrupt occurs. Clocks are controlled by the kernel in Mach as it must be

able to preemptively multitask threads. One design decision which has to be

made is how fast to run the clocks | how often to cause interrupts to occur.

Acorn's RISC OS provides a centisecond timer and leaves one unallocated

for special uses. Mach's clock interface allows for sophisticated control of

21

these clocks. It allows for setting the resolution of the clock in nanoseconds

and for reading clocks at nanosecond resolution. Alarms may also be set to

wake up a thread at a given (absolute or relative) time.

4.5 Structure of Mach

Internally Mach is notionally organised into machine dependent and machine

independent parts. However, there is no documentation about the purpose

or function of each �le. Additionally, the platform-dependent �les within the

i386 directory are split by author, not by purpose which makes it extremely

di�cult to locate the �le that is required.

There are approximately 210 object �les in a typical build of gnumach

2

. 53

of these are directly from the i386 directory. Unfortunately, this is not the

full story since the non-machine speci�c �les also include many header �les

which contain machine speci�c data, and in some cases even inline assembler.

Assembly code is justi�able (particularly in kernels), but frequently there is

no comment against it to indicate what it does and it is unreasonable to

expect porters to understand 8086 assembler.

The internal layout is confused. The original build environment used �les

in a `dummy' directory to control which features were added to the kernel,

and vestiges of this system still remain. Some work has been done to convert

the kernel to a GNU-style build environment where options are speci�ed to

a con�guration script.

One of the major reorganisations that occured between Mach 3 and Mach

4 was that the build environment changed from the machine-dependent

parts pulling in machine-speci�c components to a system where the machine-

speci�c components treat the machine-dependent parts as a library of func-

tions that are used in the cases where there is not a machine-speci�c function

for the job. In theory this makes it easier to produce machine-speci�c com-

ponents and aids the understandability of it. Unfortunately, it seems that

2

this varies depending on which device drivers are selected, and increases if the kernel

debugger is enabled

22

this reorganisation was not completed and there are still many components

which work in the old way.

Porting the MIG (Mach Interface Generator) to the ARM is not a hard job,

it merely needs to be told about the sizes of certain types | for example, it

needs to be told the size of a machine word, and the size of a byte.

Mach pulls in some function from libc rather than providing its own. These

functions are htonl(), ntohl(), htons(), ntohs(), memcpy(), memset(),

bcopy(), bzero() and strstr(). The easiest way to provide these functions

is to build glibc for the appropriate target. Since the build environment is not

set up to build for a di�erent processor (referred to as a cross-compilation),

some manual tweaking of the Make�le is required.

4.6 Summary of Evaluation

I was unsuccessful in my attempt to port Mach to the ARM. This was due

to a number of factors:

� The internal structure of Mach is not su�ciently well documented.

� Mach has a lot of code in it left over from previous incarnations. It

needs to be tidied up so it is easier to understand.

� I did not have access to the University computer systems from my

room, as I had been led to believe that I would.

� The build structure of Mach is extremely complicated.

I therefore decided to look for alternative methods of running HURD on the

ARM.

23

Chapter 5

Porting HURD

5.1 The Architecture of HURD

In order to port HURD, it is necessary to have some understanding of the

structure of HURD. As has previously been stated, HURD consists of mul-

tiple servers which cooperate to provide the functionality traditionally pro-

vided by the Unix kernel. This is not quite true as some functions are more

appropriately provided by the C library. I summarise here the HURD servers

and their purpose.

5.2 The HURD �lesystem

As in traditional Unix, the �lesystem is very important under HURD. Devices

are represented by special �les in the /dev directory and it is possible to

mount �lesystems by using the settrans command, which sets up a translator

1

on a directory.

1

HURD sometimes refers to servers as translators when they are being used in this

manner

24

ext2fs

ufs

nfs

storeio

pfinet

pflocal

symlink

firmlink {}
Figure 5.1: Communication between the HURD �lesystem components.

A choice of two popular �lesystems are available for disc-based �lesystems:

The ext2 �ling system that was developed for Linux by Remy Card and

the ufs �ling system which has a BSD heritage. The nfs �lesystem [CPS95]

is provided for accessing remote �lesystem servers. Both the ext2 and ufs

servers use the storeio server. In its turn, the storeio server communicates

with a device directly, or with a �le on a �lesystem. The nfs server com-

municates with either the p�net or the p
ocal servers and could be run over

other protocol families as servers for them become available.

The symlink and �rmlink servers are both called by and subsequently call

the �lesystem servers in order to resolve symbolic and �rm

2

links. This

completes the view of a traditional Unix �lesystem that a process has. The

communications are summarised in Figure 5.1.

5.3 HURD Processes

HURD processes are Mach tasks. HURD has various servers which provide

process management. Servers that fall into this category include auth which

handles the privileges of processes, exec which starts processes and proc which

reports on the status of processes. The crash server handles processes which

crash; it allows them to be attached to with a debugger or have images

dumped to disc or simply killed o�.

2

A �rm link is a concept not found in traditional Unix. It is conceptually half-way

between a soft link and a hard link.

25

5.4 Other servers

Most of the remaining translators may fairly be �led under `miscellaneous'.

For example, there is a null server which provides /dev/null and /dev/zero.

The �fo and new-�fo translators provide named pipes and the ifsock server

provides a BSD-style sockets interface.

There are also some `toy' servers: devport, fwd and magic. One might be

tempted to categorise the NFS server task as a server since many imple-

mentations of NFS place the server inside the kernel in an e�ort to improve

performance, but conceptually it lies outside the kernel activities in ordinary

Unix so I would consider this wrong. Of course one of the e�ects of breaking

the kernel up in this manner is to blur the distinction between kernel-provided

services and user level services.

5.5 Libraries

The HURD distribution does not just contain servers. Since GNU wish the

kernel to be easily extensible, they have provided a large number of libraries

for programmers to use in order to help them write servers faster.

For example, the ext2fs server depends on the HURD libraries diskfs, pager,

iohelp, fshelp, store, ports, threads, ihash and shouldbeinlibc.

Some of these libraries do fairly mundane things, for example, libihash pro-

vides an implementation of hash tables. Since this is supplied with the OS,

there is no need for anyone to write their own implementation. libshould-

beinlibc, as its name suggests, contains about 40 di�erent functions that are

currently missing from libc but logically belong there.

Many are to do with implementing �ling systems: diskfs, fshelp, netfs and

trivfs all help in di�erent ways. The general idea is that the author of a new

�ling system only needs to implement the parts which are speci�c to their

�ling system.

26

The threads library o�ers the interface to Mach CThreads which used to

be provided as part of the Mach 4 distribution but is no longer part of the

GNUmach distribution. ports provides a higher level interface to Mach ports.

ftpconn manages ftp connections, pager exists to help servers act as memory

pagers. This is less specialist than it sounds; for example with the mmap()

function, any �lesystem server is acting as a pager. store helps tasks use other

servers as pagers. pipe provides a high-level communications pipe between

two processes. ps simpli�es obtaining process information.

5.6 Other components

The only remaining things in the HURD distribution are essential system

programs such as getty, init, login, ps, settrans, su, vmstat and so on. Most

of these programs do the same as their counterparts in conventional Unix

distributions, but they have enhancements to deal with speci�c HURD con-

cepts. For example, su handles multiple simultaneous user IDs whereas Unix

only allows a process to have one UID. Other programs have similar purpose

to a Unix utility, but have a di�erent name due to the di�erence syntax re-

quired. For example, the command which mounts a partition on the /home

directory under Linux is

mount -t ext2 /dev/hda2 /home

Whereas Under HURD one would use the command

settrans /home /hurd/ext2fs /dev/hda2

This illustrates the philosophical di�erence quite nicely: under Linux, the

mount command tells the kernel to mount a �lesystem on /home, of type

ext2, that it will �nd on the block device /dev/hda2. The HURD settrans

command modi�es the /home inode so that when /home is accessed, it starts

a new ext2fs server with the given parameters. In this case, ext2fs will then

start up a new storeio server to access the hda2 block device on its behalf.

27

Chapter 6

The L4 Microkernel

6.1 Why L4?

There are other good reasons for �nding an alternative microkernel to Mach.

1. It's very big

The precompiled kernel distributed with the 0.2 release of the GNU

system is 1162k. Admittedly, this contains a large number of device

drivers and it is possible to build a kernel speci�c to a particular ma-

chine which will contain only the appropriate device drivers and so will

be smaller. However, the Linux (version 2.0.33) kernel I have on my

PC is only 1055k, and that includes most of the functionality which

must then be deployed by additional servers on top of Mach.

2. It is too slow

Recent measurements [HHL

+

97] show the performance of Mach to be

dramatically less than previously reported. In particular, comparing

IPC performance between monolithic and Mach-based systems shows

closer to 50% performance rather than the 90% often claimed.

3. It is too complicated

28

Mach contains in excess of 200 system calls. The semantics of each call

are complex and several of them would be better implemented without

(direct) kernel intervention. For example, many of the vm * interfaces

could be directly implemented as an IPC from the task to its memory

manager. The OSF Mach Kernel Interfaces document is in excess of

450 pages.

The L4 microkernel seems to su�er from none of these faults. L4 running on

the x86 family is under 32k and outperforms Mach by a signi�cant factor.

It contains just 7 system calls and the reference manual is only 50 pages.

It does not contain a default memory pager as Mach does, but I do not see

this as a disadvantage since di�erent operating systems have such di�erent

requirements for a pager that they normally provide their own in any case.

L4 is available for the Intel 486 (and compatible CPUs) and MIPS processors.

A version for the DEC Alpha is in development. Some interest has been

expressed in a version for the ARM.

6.2 Features of L4

The primary purpose of microkernels that are designed as bases for multi-

server style operating systems is e�cient and secure message-passing.

Mach and L4 have two signi�cant di�erences between their IPC methods.

First, Mach uses asynchronous message passing, which means that the kernel

must bu�er data (potentially large quantities of it). L4 uses synchronous

message passing which involves much less work for the kernel.

Secondly, Mach has a centralised structure for security, where the kernel en-

forces the `send rights' through a mechanism known as ports. L4 distributes

security to external tasks through a mechanism known as clans. This is �rst

discussed in [Lie92].

Tasks are organised into Clans with Chiefs. Within a Clan, the only protec-

tion is that imposed by the individual task based on the sender's ID (which is

29

sender
receiver

chief

clan
message

Figure 6.1: Message transmission between tasks in di�erent Clans.

enforced by the microkernel) but between Clans, each Clan boundary that the

message crosses incurs inspection and possible rejection by the Clan Chief.

Clans are nestable, so a hierarchy of protection can be built. An example of

message transmission is shown in Figure 6.1. Here, the rectangles represent

Clans and the circles represent tasks. The thick arrow represents the message

that is sent and the thin arrows represent the messages which are actually

passed.

In a centralised system, the kernel is responsible for administering port rights

which adds signi�cant overhead to IPC calls. This con
icts directly with the

requirement that IPC be fast. Additionally, it is philosophically superior

since the point of a microkernel is to remove as many features as possible

from kernel space. It does not harm speed when communication is intra-clan

and simply multiplies the time taken by the number of clans traversed when

communication is inter-clan. It should also scale better than an in-kernel

regulated protection scheme since the protection mechanisms may be chosen

on an arbitrary basis and changed arbitrarily frequently without requiring

communication with the kernel. Transparent multiple node communication

may be achieved using the clan mechanism since the task sees no di�erence

between communicating with a task on a di�erent machine and a task on the

same machine in a di�erent clan. In either case, the message is intercepted

and potentially modi�ed by the clan's chief.

30

6.3 Memory management in L4

Mach has an intricate memory management system which allows the task to

communicate with its pager in great detail. L4 has no such interface. It has

an extremely simple handler for the physical memory called �

0

. This provides

no additional paging facility. It is intended to grant all of the available

physical pages to a more sophisticated higher-level pager which is referred to

as �

1

.

I do not see the advantage in placing �

0

outside the kernel. It requires that the

kernel pass considerable information about the physical state of the machine

to �

0

(though this is achieved in an e�cient manner). It is necessary to de�ne

an IPC protocol to access �

0

as part of the kernel de�nition as otherwise the

task of writing �

1

would be impossible. The �

0

protocol de�nition notes that

`Special �

0

implementations may extend this protocol' which is unwise in my

opinion since it could lead to incompatible implementations.

Conceptually then, �

0

may be considered to be part of the kernel. The only

advantage to having �

0

separate to the kernel is that it allows for separate

compilation of �

0

which may be convenient in certain situations. The design

of �

0

is such that it will not be required after the initial OS bootstrap, except

to refuse requests for any further memory allocation. It might lead to a more

e�ciemt implementation to put �

0

inside the kernel and have a system for

removing initialisation code from the kernel as recent Linux kernels do.

6.4 Device drivers in L4/ARM

If L4 is ported to the ARM then device drivers present an interesting problem.

On the ARM, there are only two types of interrupt, normal and fast. It is

necessary to interrogate the I/O controller to determine which device caused

the interrupt. This is not a problem as such, it is reasonable for the kernel

to de-multiplex the interrupt and expose an interface to the drivers that

masks this, but the real problem is that all the expansion card interrupts

are multiplexed onto one of the I/O controllers lines. When that interrupt

31

is triggered, each expansion card must be interrogated in turn to see if it

caused the interrupt. There is a standard way for expansion cards to tell the

kernel how to �nd out if their interrupt has been triggered, but not all cards

support this method. For details, see [Aco92, page 4-126]

This is soluble in Mach | since the device drivers are in-kernel, interrupts

can be passed around the built-in drivers until one claims it. However in

L4, this is somewhat more di�cult. Since the device drivers are outside the

kernel, it is not possible for the kernel to tell a priori which expansion card

has caused the interrupt. Unfortunately, L4 allows only one thread to be the

recipient of any given interrupt.

In my opinion, L4 should be modi�ed to allow an interrupt to be shared | ie

the interrupt should be delivered to all of the threads which have requested

it. It is then necessary to have a further protocol which permits the thread

to tell the kernel whether or not it has dealt with the interrupt or wishes it

to be passed on to other claimants.

However, there is a security problem with this. A thread needs no particular

right to associate with an interrupt. Since it is already determined that

security shall lie outside the kernel, it makes no sense to make an exception

to this rule for device drivers. Any solution ought to be formulated in terms

of clans and chiefs. Unfortunately, the kernel is an exception to the clans

mechanism. Messages that are sent directly to the kernel bypass all chiefs. I

consider this to be a
aw in the implementation of L4.

Another potential solution to this problem is for L4 to treat subsequent

claimants of the interrupt specially, and pass them to the �rst claimant for

checking, as if it were the chief for this particular thread. However, this idea

is also
awed since the protection it provides can be circumvented by the

following sequence:

1. A second (malicious) thread claims the vector and is approved.

2. The �rst thread is killed in order to be replaced by an improved version.

The second thread then becomes the primary thread.

3. The second thread may now deny service to the replacement for the

32

�rst thread.

The only viable solution to this problem in terms of the current operation

of L4 is to have a task external to the kernel which device drivers register

themselves with.

6.5 HURD on L4

The HURD distribution contains a large number of libraries. This was a

design decision taken early on, since it was thought likely that as a large

number of similar services would be desired, abstracting as much as possible

into libraries was a good idea. One of the libraries in the HURD distribution

is LibMOM (MicrokernelObject Module) which provides an abstraction layer

between HURD processes and the underlying microkernel. The intention of

this library is that to port HURD from one microkernel to another it should

only be necessary to rewrite LibMOM.

However, careful examination of the sources show that none of the compo-

nents of HURD currently use LibMOM. So the �rst step in porting HURD to

any other microkernelmust be to alter the various servers to use the LibMOM

indirection layer.

6.5.1 Memory Management

The vm allocate()Mach system call is replaced by the LibMOM functions

mom allocate memory() and mom allocate address(). However, these func-

tions only allow for allocating memory in the current task, whereas Mach's

vm allocate() allows tasks to allocate memory into the address space of an-

other task. Unfortunately, HURD does use this feature of Mach and there is

no de�ned LibMOM function to transfer memory from one task to another.

It is not used frequently, of the 98 calls to vm allocate(), only 15 do not

refer to the invoking task. For example, the exec server allocates memory to

the task that it is starting using vm allocate().

33

If a microkernel has external memory managers, then it must be possible for

one task to give memory to another task. However, the precise procedure for

this is likely to vary from kernel to kernel, so I would propose that a new call

is required for LibMOM.

Some of the current LibMOM calls are actually common combinations of

other calls. Whether a combined call is required that allocates memory to a

di�erent task is a question that could only be answered by pro�ling a system

that did not have it and comparing it to one that does.

6.5.2 Interprocess Communication

The other main microkernel provided service is interprocess communication,

normally abbreviated to IPC. Much of the IPC in Mach-based operating

systems is already abstracted away from the raw Mach Msg interface by

MIG, the Mach Interface Generator. It is similar in action to Sun's rpcgen

program in that it takes a high level representation of services provided into

client and server stubs which can be linked against by ordinary programs.

The operating systems group at Utah have written Flick [EFF

+

97] which is

intended to provide a replacement for many di�erent generators of this sort,

including MIG and rpcgen.

I don't think it is worth investigating porting MIG to generate L4 calls,

since Flick would provide a much better basis for emulating Mach-style IPC.

Flick generates code that is `between 2 and 17 times faster' [EFF

+

97] than

other generators. Flick already supports interface descriptions written in

CORBA, ONC RPC and MIG, and will generate stubs for IIOP, ONC/TCP,

Mach ports or Fluke IPC. The authors claim that it is extremely
exible and

extensible so it should not be hard to provide a back end that generates L4

calls.

34

6.5.3 Emulating Mach

The alternative approach taken in a project described in [HR96] is to provide

an emulation of LibMach which provides a veneer over the Mach kernel. The

conclusion of that report is that providing a Mach emulation on top of another

microkernel is unnecessarily complicated and it is probable that altering the

overlying operating system to work with L4 directly would be signi�cantly

faster.

This does not necessarily mean that a common microkernel abstraction layer

such as that which LibMOM attempts to provide is going to be ine�cient.

Much of the overhead associated with the LibMach approach was consumed

in emulating the exact semantics of Mach. This would not apply to LibMOM

since it implements very simple primitives.

6.6 Experimental Evaluation

I was not able to perform any experimemts of my own, but the results for

running Linux on the L4 kernel mentioned in [HHL

+

97] look promising for

the performance problem associated with Mach. Additionally, they state

that it took `14 engineer-months' to port the monolithic Linux kernel to run

on L4.

Unfortunately, I am not able to persuade GNUMach to run on my computer,

due to a bug in the device driver for my Adaptec SCSI card. I was therefore

not able to test my modi�cations. I hope to do so at some stage in the future

when a replacement driver appears.

There are many shortcomings in the LibMOM API compared to the Mach

API. LibMOM evidently requires more work before HURD can be fully ab-

stracted fom the Mach microkernel. In order to achieve its goal of abstrac-

tion from any particular microkernel, it must abstract all the services which

HURD requires. It does not currently even attempt to deal with handling

threads, clocks and most importantly, it has no interface which deals with

35

access control or other security mechanism.

It could be argued that this type of interface should not be added to Lib-

MOM ; instead in order to port HURD to a new microkernel, libthreads and

libports should be ported. I would disagree with this because it would then

leave many libraries which had to be rewritten instead of one, which would

make the task of porting HURD less clear.

36

Chapter 7

Project Evaluation

7.1 Conclusions

HURD is designed to be the kernel of the GNU Operating System. It is

crucial that it runs on machines of as many di�erent types as possible. Un-

fortunately, Mach is extremely di�cult to port to new architectures. Due to

the lack of performance which Mach currently exhibits, there is little or no

incentive to port it to new architectures. So while HURD continues to run

on Mach, it is unlikely to run on many types of machine.

There is hope for HURD. It seems to be possible to abstract the component

servers away from the Mach interface. If this is done then it will allow the

replacement of Mach with L4, or possibly another microkernel.

7.2 Further Work

During the course of this project, I identi�ed a number of things that I would

like to do. These are not all directly related to the GNU HURD and some

of them would make interesting projects in their own right.

37

� Flick should be examined to determine how easy it is to modify it to

generate L4 IPC calls.

� A followup project could investigate porting L4 to alternative proces-

sors.

� Further work should be done on abstracting HURD's use of port rights

away from Mach and towards a more generic approach which would

allow for it to be ported between microkernels more easily.

� Some work should be done towards providing a
oating point emulator

for the ARM. This would bene�t Linux/ARM and NetBSD/ARM as

well as Mach or L4.

38

Bibliography

[ABB

+

86] Mike Accetta, Robert Baron, William Bolosky, David Golub,

Richard Rashid, Avadis Tevanian, and Michael Young. Mach: A

New Kernel Foundation for UNIX Development. In Proceedings

of the Summer 1986 USENIX Conference, 1986.

[Aco92] Acorn Computers Limited. RISC OS 3 Programmer's Reference

Manual, December 1992.

[Adv95] Advanced RISC Machines Ltd. ARM710a Preliminary Data

Sheet, ARM DDI 0022D edition, July 1995.

[CDK94] Coulouris, Dollimore, and Kindberg. Distributed Systems Con-

cepts & Design. Addison-Wesley, 2nd edition, 1994.

[CPS95] Brent Callaghan, Brian Pawlowski, and Peter Staubach. RFC

1813. Technical report, Internet Engineering Task Force, June

1995.

[EFF

+

97] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lind-

strom. Flick: A
exible, optimizing IDL compiler. In Proceedings

of the ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI-97), volume 32, 5 of ACM SIG-

PLAN Notices, pages 44{56, New York, June15{18 1997. ACM

Press.

[HHL

+

97] Hermann H�artig, Michael Hohmuth, Jochen Lidtke, Sebastian

Sch�onberg, and Jean Wolter. The Performance of �-Kernel-Based

Systems. In Proceedings of the sixteenth ACM Symposium on Op-

erating System Principles, volume 31-5, December 1997.

39

[HR96] Michael Hohmuth and Sven Rudolph. Steps Towards Porting

a Unix Single Server to the L3 Microkernel. Technical report,

Dresden University of Technology, April 1996.

[Lie92] Jochen Liedtke. Clans & Chiefs. In 12. GI/ITG-Fachtagung Ar-

chitektur von Rechensystemen, pages 294{305. Springer, 1992.

[Lie93] Jochen Liedtke. Improving IPC by kernel design. In Barbara

Liskov, editor, Proceedings of the 14th Symposium on Operating

Systems Principles, pages 175{188, New York, NY, USA, Decem-

ber 1993. ACM Press.

[Lie95] Jochen Liedtke. On �-kernel construction. In Proceedings of the

15th Symposium on Operating Systems Principles, pages 237{250.

ACM Press, December 1995.

40

